Isoperimetric-type inequalities for generalized centroid bodies

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized isoperimetric inequalities.

A new class of isoperimetric inequalities is described and illustrated.

متن کامل

On weighted isoperimetric and Poincaré-type inequalities

Weighted isoperimetric and Poincaré-type inequalities are studied for κ-concave probability measures (in the hierarchy of convex measures).

متن کامل

A probabilistic take on isoperimetric-type inequalities

We extend a theorem of Groemer’s on the expected volume of a random polytope in a convex body. The extension involves various ways of generating random convex sets. We also treat the case of absolutely continuous probability measures rather than convex bodies. As an application, we obtain a new proof of a recent result of Lutwak, Yang and Zhang on the volume of Orlicz-centroid bodies.

متن کامل

Isoperimetric-type inequalities on constant curvature manifolds

By exploiting optimal transport theory on Riemannian manifolds and adapting Gromov’s proof of the isoperimetric inequality in the Euclidean space, we prove an isoperimetric-type inequality on simply connected constant curvature manifolds.

متن کامل

Isoperimetric-type inequalities for iterated Brownian motion in R

We extend generalized isoperimetric-type inequalities to iterated Brownian motion over several domains in R. These kinds of inequalities imply in particular that for domains of finite volume, the exit distribution and moments of the first exit time for iterated Brownian motion are maximized with the ball D centered at the origin, which has the same volume as D. Mathematics Subject Classificatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2016

ISSN: 1331-4343

DOI: 10.7153/mia-19-53